Drivolution: Rethinking the Database Driver Lifecycle

Emmanuel Cecchet
University of Massachusetts & Aster Data Systems
140 Governors Drive, Amherst, MA 01003, USA

cecchet @s. unass. edu

ABSTRACT

The current design of database drivers — a negessalr for
interacting with a DBMS — imposes undue burdensttmse
who install, upgrade, and manage database systathghair
applications. In this paper, we introduce Drivatati a new
architecture for DB drivers that reduces the cosk, and
downtime associated with driver distribution, dgphent and
upgrade in large production environments.

We view DB drivers as part of the DB schema, sov@ution
stores drivers in the database itself. Drivers dyeamically
downloaded and installed by a small bootloader tieatdes
within each client applications. Downloading, irlstg and
upgrading drivers occurs transparently to applcetj and
existing DB management mechanisms are used toedefim
enforce desired security policies. We show how @lition can
be integrated into legacy DB engines, replicatioddieware,
and applications, without requiring changes to #eever or
client applications. We present several case stutia illustrate
the use of Drivolution in production environments.

Categories and Subject Descriptors
H.2 [DATABASE MANAGEMENT]: Database Administration
D.2.13 [Reusable SoftwargReusable libraries

Keywords

Database driver, management, lifecycle, online agbgr

1. INTRODUCTION

Despite the standardization of database APls, #terbgeneity
of servers and application platforms is daunting: &xample,
the MySQL DBMS [7] officially supports Connector/NE
Connector/ODBC, Connector/J (Java),
Connector/PHP, mysqlclient (C API), mysqli (PHP),
DBD::mysql (Perl), MySQLdb (Python), DBD::MySQL &
ruby-mysql (Ruby) and MySQL++ (C++). This does imalude
independently developed APIs such as TCL or Eiffieppers.

Such heterogeneity poses a significant challengelange
production environments that evolve over timesltommon to
see a large number of diverse client applicatiemsn if they all
access a single database instance. Merely upgralkinglient
side drivers for the one database can turn intoomptex
problem spanning multiple architectures and plat®rand

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oreistribute to lists,
requires prior specific permission and/or a fee.

Middleware’09 Nov. -Dec. 2009, Urbana Champaign, lllinois, USA.
Copyright 2009 ACM 1-58113-000-0/00/0004...$5.00.

Connector/MXJ,

George Candea
EPFL & Aster Data Systems
IC-DSLAB, Station 14, 1015 Lausanne, Switzerland

geor ge. candea@pf! . ch

requiring a broad set of skills and expertise amdhg
operations staff.

Even starting out with a single database versionaosingle
platform, large deployments inevitably become tmgeneous
over time, as they evolve to meet business nedus diversity
of drivers is thus compounded by the heterogerdityatabase
servers and platforms on which they run; for exanpySQL

is officially supported on 63 different platforn] [

The problem becomes even more acute in replicat&d D
environments, where upgrading database drivers &V®
clients easily becomes a more complex problem thpgmading
the database itself, because it needs to takeaotount the
Cartesian product of the set of drivers and theofetatabases
running in the organization. This complexity is lallenge in
hosting centers and large web sites. For examplar P
Networks’ 500 web servers host many applicatioms RHP,
Ruby, Perl, etc.) that access 100 MySQL databakgk and
Match.com has more than 100 web servers accesssgiggke
database cluster of only a few machines [6].

We see four major problems that have an importaattizal
impact on large production environments: (1) dridistribution
is separate from the database engine, which caly ézed to
incompatibilities and mismatches between driversd an
databases, (2) driver installation requires mamyerations on
each client machine, (3) driver upgrades are disrepand
require applications to be reconfigured and restiirand (4)
malicious applications can use specifically crafehivers to
exploit security holes in the database specifievodt protocol
or attack database servers with buffer overflowhmégues.
These combined issues lead to high operationals cast
foregone revenue due to application downtime.

In this paper we describe Drivolution, an altervatito the
traditional database driver architecture. With Dhition,

drivers are stored in the database or the repdicatiiddleware
and are distributed by the server to its clientsdemand. This
way, driver distribution and deployment is manadeam a

centralized location, closely associated with thatadase.
Clients are guaranteed to get the correct drivesioe to access
the desired database. A generic client-side bod¢iodownloads
and executes the driver code provided by the da¢abahis
bootloader is simple and almost never needs upggadnuch

like an operating system bootloader. The bootloaden

download multiple drivers and switch a client frame version
to another to achieve driver upgrades that aresprament to the
application.

We implemented Drivolution for the popular JDBC A&hd
experimented with it in the context of the SeqUa&2] database
clustering middleware. We show how Drivolution denused in
various configurations to provide seamless drivistrithution,

installation and upgrades for large scale setupslving legacy
applications and databases. The ability of Drivioluto co-exist
with current technologies and legacy componentersffa
smooth path for making Drivolution a core serviéeb8MSes.
We hope to motivate adoption of the Drivolutionhdrecture in
other production DBMSes. Drivolution is freely aehie [3].

The rest of this paper is structured as followscti®a 2
describes the current state-of-the-art in databasers and the
issues that arise from their current lifecycle. thec3 and 4
present the Drivolution concepts and design. Secliogives
multiple use cases of Drivolution with the Sequdiatabase
replication middleware and discusses the pros and of each
configuration for driver installation and upgradesproduction
environments. Section 6 concludes the paper.

2. CURRENT STATE-OF-THE-ART

State-of-the-art databases today have adoptedlyg taiiform
way of managing DB drivers. The typical lifecycte i

1. Get an appropriate driver package from vendor
Install the driver on the client application machin
Configure the client application to use the driver
Start the application and load the database driver
Connect to database and check protocol compatbilit
Authenticate

Execute requests

Nogokrwbd

A driver update requires the following steps:

8. Stop the application
9. Uninstall old driver
10.Repeat steps 1 through 7

There are considerably more driver instances deplahan
DBMS instances. First, there are many more clippiieations
accessing databases than database instances egeguéries.
Second, as applications can run on a large vaokplatforms
and middleware, drivers generally have to supp@ahynmore
architectures than database engines, which argrassifor the
major operating systems and hardware architectures.

Driver diversity is a major challenge in practiGgivers provide
support for different programming languages and SAPI
Diversity also arises from the lack of standardoratin
communication protocols between client applicati@md
database engines. Despite several efforts [9], n@byocols
still co-exist in most enterprise setups.

Step 1 above requires the application developerkntow in
advance which database version is going to be used
deployment, if they want to ship the applicatiorihwthe driver.
This might not be possible a priori or the drivieehsing terms
might not allow its redistribution with an applicat. Any
resulting version mismatch between the driver deddatabase
would prevent the application from accessing itabase.

Steps 2 and 3 can be relatively easy if the machasting the
application connects to a single database andriberdomes in
a package that automates the installation procéssan

application needs to access multiple databaseg ufifferent
driver versions, installation and configuration aidy become
complex. Each driver implementation needs to belddain a
separate namespace and this can be an issuedfitiees have
not been designed to co-exist in heterogeneouscments.
Driver settings incompatible with database settialge prevent
proper interactions with the database.

It is only during step 4 that the compatibility \ween the
application and the driver is tested. The main cesirof
incompatibility are mismatches between the binaryft of the
driver and the hardware platform or incompatible
compilation/linking options between the driver amplication.

Step 5 is where the compatibility between the degaband the
driver is checked. Note that not all implementagi@heck their
interoperability at the protocol level. In such ess
incompatibility errors might be detected at an elater stage
than connection time.

Step 6 can introduce additional errors if the dridees not
support authentication methods that are required thy
database. It is only if this step is successful tha application
can finally issue requests to the database.

Driver updates are not necessarily released simediasly for
all platforms. This means that large setups withnyna
applications accessing a database have to perfpdates one
by one for each application. The process requiregpplication
to be stopped for the driver to be updated. Ifupgrade is not
automatic or does not support the specifics ofitistallation
(multiple versions installed, multi-database sefupk...) a
manual uninstall must be performed first beforeiteeating
through all the steps (1 to 7). Not only is the afedprocess
disruptive for the application, but it is also ergrone, which
lengthens the downtime of the application. Ofteoftveare
upgrades are delayed or simply not applied becafisheir
complexity or the risks associated with the procdgds can
leave potential security holes open and comproniis¢h
applications and databases.

3. DRIVOLUTION DESIGN

We propose a new design for managing the lifecyti#atabase
drivers that simplifies their installation, deplogm and
management on client machines. Figure 1 gives anviaw of

the Drivolution architecture.

Application 1 Application 2 Application 3
Drivolution Drivolution Driver 1
bootloade bootloade Sath

' T atapbase
' | Driver 2 Driver 3 | . protocol
1
EDrivqution ,
rotocoo | jmmada—c—o———-)
;p i In-Database :
____________ 1 1 i 3
i Standaione : : Drivolution Server:
- . — .
:Drlvolutlon Server: : Driver 2]
' Driverz |1 i . !
: . t| Driverg |}
1
i Driver 2 i e
!] Databas

Figure 1. Drivolution architecture overview

3.1 Overview

In Drivolution, drivers are normally stored in tdatabase in a
regular table. Alternatively, a standalone exterbalvolution

server can be used as a service to distribute rdrivémall,

stripped-down Drivolution bootloaders are used Hient

applications to interface to a Drivolution Serveodule to
download the appropriate driver code correspondimgthe
database. Unlike drivers, Drivolution bootloadeesrdly ever
need to be updated due to their simple and limiéedure set
(Section 3.1.1). Drivolution servers implement avolution
protocol (Section 3.4) and are separate from th@bdae
protocol. This allows applications that do not iseolution to
still access the database with a conventional drililee
Application 3 in Figure 1.

Drivolution uses leases to limit the time for whidfstributed
drivers are valid, like DHCP does for IP addresséke

Drivolution bootstrap protocol is inspired from DRGind has
only three messages: DRIVOLUTION_REQUEST

DRIVOLUTION_OFFER and DRIVOLUTION_ERROR The driver
file transfer can use an FTP-like protocol or acrgoted and
authenticated equivalent in insecure environments.

The Drivolution bootloader must first send a
DRIVOLUTION_REQUESTmessage (to a specific server or to a
list of trusted servers) containing the name ofdatabase and
corresponding credentials, the APl name (e.g. JDBOBRC...)
with an optional version, the client platform (e3RE 1.5,
windows-i586, linux-x86_64...) and additional optioimscase
multiple drivers matching the previous criteria available.

Based on the information received, the Drivoluti®erver
queries its information schema to find the appwtpridriver.
Further information on driver match making can bend in the
Drivolution documentation [1]. If no driver can Heund, a
DRIVOLUTION_ERROR message is sent back with an optional
detailed error message in plain text (invalid dasa) no driver
for specified APl/platform, etc...). If multiple devs match the
request, the first matching driver is chosen. A
DRIVOLUTION_OFFER message is then sent back to the
bootloader. The message contains the lease tineedtiver
location and format. The driver is then downloaded.

The transfer can be secured using an SSL channghich case
the bootloader verifies the Drivolution server'sLS&rtificate
(to make sure the server is legitimate) and theedrtannot be
tampered with during transfer by a potentially Tialis
middleman. It is also possible to sign drivers, dmle a
separate trusted wrapper in the bootloader veigfyaures.

In the case of replicated databases, multiple gaplcan answer
client requests and this is also true for Drivanti As for
DHCP, aDRIVOLUTION_DISCOVER message can be broadcast
to the network with the same information as a retjugessage.
All Drivolution servers that have an appropriatévelr send a
DRIVOLUTION_OFFER message back. The bootloader can then
send a unicastDRIVOLUTION_REQUEST to one of the
Drivolution servers. This mechanism allows databage be
added or removed from a database cluster in a gémbu
manner, without having to reconfigure client apgticns.

The DHCP-like protocol employed by Drivolution affea
tradeoff between manageability and security: on based, it
makes the distribution of drivers easy; on the othend, it
exposes Drivolution to man-in-the-middle attacks.te same
time, unencrypted driver transfer channels offeparpunities
for drivers to be replaced with malicious ones.itB1 default
configuration, Drivolution uses encrypted autheatécl SSL
channels (described above). It is important for iadstrators to
understand that switching to a less secure cordtgur can lead
to serious system compromise, and this risk isafitat worth it.

3.1.1 Drivolution Bootloader

The Drivolution bootloader is an interceptor thabstitutes the
driver in the client application. It simply integats the connect
method call of the API to capture the necessargrinition to

retrieve the driver from the Drivolution Server tine DBMS.

Once the driver code has been transferred, it &sddd

dynamically into the application’s memory. The apation can
then transparently use the driver, without consitien of how

installation occurred.

Dynamic code loading may not be available in alglaages on
all platforms, but it can be implemented securely most
popular environments such as Java [4], .NET [13}+ €10] or

Perl using DynalLoader [2]. Connection configuratigptions
are passed to the installed driver, which allovesapplication to
continue to use database driver specific optionextensions.
All other calls are passed through to the driveon@ction
options can also be configured and enforced orbtiolution

server, which then sends a pre-configured drivéhécclient.

Drivolution bootloaders are generic to the extédrat tonly one
implementation per APl and platform is needed. Tlaeg

database or driver implementation neutral. For g@tamwe

have implemented a single Drivolution JDBC bootkraid Java
[3] that supports all JDBC drivers of all databases all

platforms. It has the ability to load multiple irephentations of
drivers and to switch from one implementation t@ther, so
that new connect calls can use a more recent dréssion.

Bootloaders are only designed to support one fikBtland do

not support migration among different APIls. Howewas only

the connection establishment part of the API ierirepted,
bootloaders do not have to be changed if othes drthe API

are changed. API changes in Drivolution are nomitdtion for

high availability, as the application would haveb® changed to
use the new API anyway. Drivolution is meant foplagations

that need to dynamically upgrade their drivers eki¢eping the
same database API.

Dynamic driver updates that are transparent toiegns may
tempt administrators to deploy updates withoutnogs testing.
However, good testing practices are at the same &asier to
implement. For example, a new driver version colld
deployed to a single client machine with a shaség if it works
correctly, then it can be deployed more widely.

3.1.2 Updating the Driver

If the application in which the bootloader is hakteas not
terminated before the lease has expired, the kamtetocontacts
the Drivolution Server to either renew its leaseget a new
version of the driver by resendingD®RIVOLUTION_REQUEST

message. This allows Drivolution bootloaders td pegularly

for driver updates in critical applications tha¢ aever stopped.

When the driver needs to be upgraded, three rapkate
policies are available to transition existing cortimns (more
details in Section 3.3). New connections always thee most
recent downloaded driver. Existing connections gidine old
driver must be terminated before transitioningh® mew driver.
Depending on the policy, existing connections remactive
until they have terminated their current transacto until they
are explicitly closed by the application, or fordeclose.

When the lease has expired, but no new driver &lae for
replacement, ®RIVOLUTION_ERRORIs sent back. The policy
to close active connections is based on the curlease.

Existing connections can remain active with theokexd driver
until they terminate by an explicit closing by thgplication. In
that case, the bootloader blocks new connectionestg and it
returns errors explaining the absence of a suitter.

3.2 Driver Lifecyclein Drivolution
Drivolution offers a simpler lifecycle than the oemt state-of-
the-art described in Section 2. It consists offtlewing steps:

1. Get an appropriate Drivolution bootloader
2. Install the Drivolution bootloader on
application machine
3. Configure client application to use Drivolution ktmader
4. Start the application
When a driver update is needed, all clients cangggaded in a
single step:

1. Add new driver to the Drivolution Server

The number of steps required for installation idueed since,
once the bootloader has been installed, all incoibiptes
between database driver and server are avoided.upbeade
process drops from ten steps per client applicatarne simple
insert operation on the Drivolution Server.

Driver upgrades are provided typically by databasedors. The
database administrator (DBA) is responsible foradase and
driver upgrades. The Drivolution server can providilitional
sanity checks to help the DBA make sure that namgyalled
drivers are compatible with the current database.dxample,
the upgrade can be performed on a test machinghancpushed
to all other machines.

the client

Effective driver renewal on the client side depeadghe lease
time that has been chosen. The first lease carmtb® e very
short and, if there are problems, the administresor revert the
driver in the Drivolution server. Shorter leasedgrallow faster
reaction to upgrades but higher traffic to the Diudion Server.
Settings ranging from an hour to a day are suitable
Alternatively, a dedicated channel between the @ution
bootloader and Server allows the Drivolution Server
immediately signal that a new driver is availabiRevoking
connections can be performed by the bootloadenfareed in
the database server, if the Drivolution Serveigistly integrated
with the database engine.

A misconfiguration or unavailability of the Drivdion Server
can impact a large number of applications, sinilarthe worst
case) to a database outage. Note that the DrigaliBerver can
be replicated and a failure should have a minimabact on
already running applications since it only impaotswv driver
requests or driver renewal requests.

3.3 Schemafor In-Database Drivers
We view drivers as being part of the database sahamd thus
they belong to the database system tables.

We extend existing database information schema witable
that stores drivers and their metadata. This way, new
development is required and standard database msof®can
be used to store drivers in the database. New rdrigan be
installed using simple INSERT statements and netdeusing
regular SELECT queries. Table 1 describes a defimiof the
driver table that can be stored in the databasernvdtion
schema. Data type definitions follow the ANSI SQDO03
standard. Each driver supports a specific set ofsAf&nd
platforms such as JDBC3 on JRE 1.5 or ODBC 3.5 on

linux_x86_64. NULL values for API version numbers o
platform specifications mean that all versions tatfprms are
supported, respectively. The driver version nunibeptional.

Table 1. Information schema driver table definition

Column name | Datatype Description

driver_id INTEGER | Primary key identifying drivers (g
NOT NULL | be used as a foreign key by other
PRIMARY | information schema tables far
KEY integrity checks)

api_name VARCHAR| Supported APl name (e.g. JDBC,
NOT NULL | ODBC...)

api_version_major INTEGER API major version number

api_version_minor INTEGER API minor version number

platform VARCHAR | Name of the platform(s) supported

driver_version_majgr INTEGER Driver major version number

driver_version_mingr INTEGER Driver minor version number

driver_version_micrp INTEGER Driver micro version number

binary_code BLOB NOT| Binary of the driver code
NULL

binary_format VARCHAR| Format of the binary code (e.g.
NOT NULL | JAR, ZIP...)

Standard database security mechanisms can be askwehitt
access to this table to a specific set of user<lient IP
addresses. Furthermore, to refine the managemesratams,
we add ariver_permissiortable to the information schema that
defines access rights and update policies for drivewould be
possible to expand the database GRANT command ridlda
such policies.

Table2. driver_permission table description

Column name Datatype Description
user VARCHAR User name
client_ip VARCHAR IP address of the client
database VARCHAR Database name
driver_id INTEGER NOT Identifier of the driver in

NULL REFERENCES
driver(driver_id)

the driver table

driver_options VARCHAR Driver configuration
options
start_date TIMESTAMP Date from which the
driver can be downloaded
end_date TIMESTAMP Date until which the
driver can be downloadeq
lease_time_in_m BIGINT Maximum lease time [in
ms
renew_policy INTEGER Policy to apply when 3
0: RENEW lease needs to Db
1: UPGRADE renewed.
2: REVOKE
expiration_policy | INTEGER Policy to apply when|

0: AFTER_CLOSE
1: AFTER_COMMIT

lease has expired
(encoded as an integer).

2: IMMEDIATE
transfer_method INTEGER Transfer protocol to use
-1: ANY to download the drive

>=0: Protocol id code.

Table 2 presents thariver_permissiontable. It defines which
client gets which driver for each database instarides is

especially useful when different database instaneegiire
different extensions, e.g. GIS (Geographic InfoioraSystem),
NLS (National Language Support), or specific autivation

methods, and thus different drivers.

Additional client specific configuration optiondr{ver_option$
can be given to instruct the bootloader to enfqueeticular
settings at driver loading time. The validity ofddver can be
defined by dates (i.start_dateandend_datg or by a lease time
after which the bootloader has to recheck if a mergion of the
driver is available. The method used to transferdtiver code
can be restricted to a specific secure protocoluse any
protocols supported by the bootloader and the $ervhe
protocols are details in the Drivolution documeiota{1].

When the lease has expired and must be renewed, the

renew_policydefines the action the bootloader must take.nt ca
continue to use the same driver (RENEW), downloadew
driver (UPGRADE) or terminate to use the currenveir even
though there is no replacement available (REVOKE)e
expiration_policyparameter defines when the renew policy must
be applied. The options are to wait for all curreminections to
be closed (AFTER_CLOSE), terminate connectionsoas f1s
they have committed their in-flight transactions
(AFTER_COMMIT) or terminate immediately (IMMEDIATE)

3.4 Drivolution Protocol

The Drivolution protocol is used by the Drivolutidootloader
to negotiate the appropriate DB driver with theathase. A
complete specification of the protocol and an opeurce Java
implementation can be found on the Drivolution vegb [3].

3.4.1 Getting the Appropriate Driver

Table 3 describes the Drivolution bootstrap protacogeneral
terms. For clarity, we omit the details regardimgrgption and
signature verification.

Table 3. Drivolution bootstrap protocol description

Drivolution bootloader Drivolution Server

send(host, port,
DRIVOLUTION_REQUEST)

if no driver matching request {
send(DRIVOLUTION_ERROR)
}else {
send(DRIVOLUTION_OFFER)

}

FILE_ REQUEST(driver_file)

FILE_DATA(binary_code)

recheck_time = current_time +
expiration_time_in_ms

decode(binary_format,binary_code
load(decoded_binary_code)

N2

The Drivolution bootloader must first open a conitetto the

DBMS and then send a DRIVOLUTION_REQUEST message.

The message contains the following information:

- name of the database to be accessed with optional
user/password information if authentication is reeqd,

- APl name (e.g. JDBC, ODBC...) with an optional versio

- client_platform (e.g. JRE 1.5, windows-i586, lim86_64...)
on which the bootloader is running,

- optional preferred binary format and driver versinnmber
in case multiple drivers matching the previousesia are
available.

Based on the information received, the Drivoluti®erver
queries the information schema to find the appetpridriver
(see section 4.1.1). If no driver can be found, a
DRIVOLUTION_ERROR message is sent back with an
optional detailed error message in plain text
(invalid database, no driver for specified API/foat, etc...). If
multiple drivers match the request, the first matghdriver is
chosen. A DRIVOLUTION_OFFER message is then seok ba
to the bootloader. The message contains one ofthhee
expiration policies presented in section 3.3 alwiit) the lease
time, the driver location and format. The driver tlsen
downloaded using a transport protocol that can éeured
corresponding to the operating environment.

Table 4. Drivolution lease renewal protocol description

Drivolution bootloader Drivolution Server

if (current_time >= recheck_time
send(host, port,
DRIVOLUTION_REQUEST)

if (driver till valid) {

send(DRIVOLUTION_OFFER)

} else if (new driver available){
send(DRIVOLUTION_OFFER)
FILE_DATA(binary_code)

} else {//nodriver available
send (DRIVOLUTION_ERROR)

}
if (renew_policy ==RENEW) {
recheck_time = current_time + expiration_timenis_
} else if (renew_policy =tJPGRADE) {
FILE_REQUEST(driver_file)
recheck_time = current_time + expiration_timenis_
decode(binary_format, binary_code)
load(decoded_binary_code)
connect_use_new_driver
switch (expiration_policy) {
caseAFTER_CLOSE:
wait_for_active_connections_closing
break;
caseAFTER_COMMIT:
close_active_connections_after_commit
break;
casd MMEDIATE:
terminate_all_active_connections
break;

unload_old_driver
} else if ((renew_policy =REVOKE) ||
DRIVOLUTION_ERROR) {
switch (current_expiration_policy)
caseAFTER_CL OSE:
disable_new_connections
wait_for_active_connections_closing
break;
caseAFTER_COMMIT:
disable_new_connections
close_active_connections_idle_or_after_commit
break;
casd MMEDIATE:
terminate_all_active_connections
break;

unload_old_driver

}

3.4.2 Driver update

If the application in which the bootloader is hasteas not
terminated before the driver validity has expiré bootloader
contacts the Drivolution Server to either renewdsse or get a
new version of the driver by resending a
DRIVOLUTION_REQUEST message. This allows Drivolutio
bootloaders to poll regularly for driver updates ¢nitical
applications that are never stopped. bootloaders use a
dedicated thread as a timer to contact the DriiamiuServer as
soon as the timer expires, or they can wait laZdy an
application call to trigger the check.

Table 4 describes the driver renewal protocolhé& driver can
be kept for a new lease,RIVOLUTION_OFFER without data
file instructs the bootloader to continue to use same driver.
When the driver needs to be upgraded, three rapkce
policies are available to transition existing coetins. New
connections always use the most recent downloadizerd
Existing connections using the old driver must baminated
before transitioning to the new driver. Dependimgtioe policy,
existing connections remain active until they applieitly
closed by the application (AFTER_CLOSE), or clossdsoon
as they are idle or have terminated their curreanhsaction
(AFTER_COMMIT), or are forced to close immediately
(IMMEDIATE). If the client uses a connection podhe first
option might not be a good choice since conneatgrewal is
highly dependent on connection pool settings anglicgiion
load.

When the driver has expired but no new driver igilable for
replacement, a DRIVOLUTION_ERROR is sent back. The
policy to close active connections is based onctireent lease.
Existing connections can remain active with theoked driver
until they terminate by an explicit closing by theplication
(AFTER_CLOSE policy). In that case, the bootloaécks
new connection requests and it returns errors aNpta the
absence of a suitable driver. The other policiesniteate
immediately all client connections (IMMEDIATE) os&oon as
they are idle or their current transaction compglete
(AFTER_COMMIT).

4. DRIVOLUTION FOR LEGACY
DATABASE SERVERS

The Drivolution Server can clearly be implementefdorh
scratch” as a new service of an DBMS engine, bus ialso
fairly easy to provide Drivolution for legacy DBMSeAfter an
overview of the server-side logic (Section 4.1v1¢, present the
design of the in-database Drivolution server ($ect.1.2) and
database-external Drivolution server (Section 4.1\Be also
describe how Drivolution can run as a standaloneice for
multiple DBs (Section 4.1.4).

4.1.1 Server Logic

The Drivolution Server side logic is relatively gita. Sample
code 1 shows the SQL statement to retrieve theoappte
driver based on client preferences.

SELECT binary_format, binary_code
FROM i nf or mati on_schema. dri vers
WHERE api _nanme LI KE $client_api _name
AND (platform 1S NULL

OR platform LIKE $client_platform
AND ($client_api_version I'S NULL

OR api _version IS NULL

OR $client_api _version LIKE

api _version)

AND ($client_driver_version I'S NULL
OR driver_version |'S NULL
OR $client_driver_version LIKE
driver_version)
Sample code 1. SQL request toretrieve driver based on
client preferences

If this statement is unsuccessful, a simple SELE@hout
preferences (omitting the part of the statemeritaiics) can be
issued. If this statement does not return any tben it means
that no driver is available for that client.

If the server contains a distribution table as dbed in Section
3.3, then that table should be queried first ushmeg statement
illustrated in Sample code 2. This gives a shaitdi available
drivers for that client. This list can be furtherted with client
preferences as explained above.
SELECT driver_id
FROM i nf or mati on_schema. di stri bution
VWHERE (dat abase 1S NULL
OR dat abase LI KE $user_dat abase)

AND (user 1S NULL

OR user LIKE $client_user)
AND (client_ip I'S NULL

OR client_ip LIKE $client_client_ip)
AND (start_date IS NULL

OR end_date |'S NULL

OR now() BETWEEN start_date AND end_date)

Sample code 2. Driver retrieval based on distribution table

Leases can be stored in a table that has the samatfas the
distribution table. This table is used only for détg purposes,
but also to retrieve client information when a Easust be
renewed.

When a new driver needs to be added to the systeraw entry
is inserted in the drivers table. Obsolete driveas be disabled
by either deleting them or setting the end_date the
current_date. Bootloaders that have a dedicatedemion with
the Server are notified immediately, others areraghgd as soon
as their current lease has expired.

4.1.2 In-Database Drivolution Server

When implemented in the DBMS engine, the Drivolatigerver
directly responds to bootloader connections. lpdssible to
only allow connections through the Drivolution Sarvo ensure
that client applications will only use drivers distited by the
DBMS. Code signing techniques can be used to ensole
certified drivers are used by the clients.

Alternatively, the Drivolution Server can listen endifferent
port than the database engine to allow legacy drit@ access
the database using existing technology. Drivolutimotloader
requests can then be served concurrently.

Most of the core functionality of the Drivolutione&er code
can be implemented in stored procedures to leveexgding
database technologies.

4.1.3 External Drivolution Server

When the database does not support the Drivolytiotocol or
cannot be extended to support the Drivolution Seriteis
possible to implement it as an external processying the
DBMS as a regular client application. Figure 2 shdvow to
implement a Drivolution Server with legacy datalsase

In step 1, the Drivolution bootloader queries thav@lution
server. The server then connects to the databasg asegacy
database driver to return the appropriate drivehéobootloader

(step 3). Finally the bootloader can install thevelrto connect
to the database (step 4).

Even though this requires the Drivolution serveuse a legacy
driver, this solution has some benefits:

- When the legacy driver becomes obsolete, only the
Drivolution server driver needs to be updated (tisat
single machine) whereas no client machines require
changes.

- When the legacy driver becomes obsolete, it mezatsthe
database has been upgraded, which is unlikely ppdra
without stopping the database. Therefore, the dtehe
Drivolution server can be upgraded along with thtatdase
during the same planned downtime window.

- The Drivolution server can be upgraded without
interrupting existing applications. If the Drivoioih server
is unavailable while a bootloader tries to renesvi@ase,
the bootloader keeps its current implementationil tiné
Drivolution server is restarted.

Applicatior 1

Drivolution bootload ®‘
rivolution bootloa er4\'
Dri\)«grz @

Drivolution Server

legacy
AN

driver
F@\
A

driver table
Dri\\er 1

@

Driver 2

Legacy Database

v

Figure 2. Drivolution server architecturefor legacy
databases

4.1.4 Standalone Drivolution Server

It is possible to have a single Drivolution serasra standalone
service providing drivers for a set of databasdss Bcenario

will be illustrated in 5.3.1. This can be usefuldgatups where
databases do not support Drivolution natively oremehan

administrator wants to manage multiple databaseedrifrom a

centralized point.

An option to implement a standalone Drivolutionveeris to use
an embedded database that does not require dpgeades. As
the rate of updates on the driver table is very, libvis easy to
replicate the Drivolution server database for aalmlity
purposes.

5. CASE STUDIES

In this section, we present several use cases sgotwbow
Drivolution improves on the current state-of-thé-alriver
lifecycle. Section 5.1 shows how Drivolution canph®BAs
administer heterogeneous DB systems; Section %&epts a
master/slave setup where Drivolution simplifiesorgguration;
Section 5.3 illustrates the use of Drivolution eplicated DB
setups; and Section 5.4 describes two ways in wbigrolution
can be used for customized driver delivery.

5.1 Simplifying Administration of

Heter ogeneous DBM Ses

A database administrator (DBA) in large organizagigs often
responsible for a significant number of databastaimces. In
such corporate environments, various applicaticses different
database versions or even engines. If applicatanshave their
own lifecycle, DBAs must share and use a common
management infrastructure to administer all dathadhis
means that all possible drivers have to be instaléend
configured with the DBA management console.

DBA Management Console

Drivolution bootloader

. DB, driver . DB, driver . DB; driver . DB, driver
| | - | -
| | | | |
| | A |} | -

¥ DB; ¥ DB, ¥ DB; ¥ DB,
Drivolution Drivolution Drivolution Drivolution

Server Server Server Server
| DB, driver]|| |[[DBz driver]|| ||| DBsdriver]|| ||| DBa driver]

Figure 3. Configuration with complete native support for
Drivolution

When all databases are fully Drivolution-compliaat,single
Drivolution bootloader has to be installed in thamagement
console. Figure 3 shows such a configuration. Edetiabase
automatically provides the appropriate driver fbe tplatform
that the management console is running on. The gesnent
console can access seamlessly any database withwing to
worry about driver configurations.

Tableb5. Driver upgradesin a heterogeneous database for 2
DBAswith and without Drivolution

Tasks Current State-of-the-Art Drivolution

Accessing| 1.Download drivers for DBA 1.DBA;
a new platform connects to db
database | 5 configure DBA console to | 2. DBA,

find driver connects to db

3.DBA; connects to db

4.Download drivers for DBA

platform

5.Configure DBA console to

find driver

6.DBA, connects to db
Database | 1.Copy appropriate driver for | 1.Insert drivers
driver DBA, platform in database
upgrade 2.Remove DBAold driver 2.Revoke old

3.Restart DBA console driver

4.Copy right driver for DBA

platform

5.Remove DBAold driver

6.Restart DBA console

Table 5 shows an example of the procedures thag kabe
performed by two DBAs for two administration taskscess a
new database from their console and upgrade thabalse
driver. With Drivolution, the procedures are mudioder and
simpler. The same procedure simplification woulglggo any
application connecting to the database.

In this configuration, driver upgrades are parttiod database
upgrade process. Each database can be upgradestiniaatly

of the others, without disturbing client applicaiso A tight

integration of the Drivolution server with the dadéige allows for
additional compatibility checks to make sure thastalled

drivers are compatible with the database engini Why, there
is no possible confusion in installing drivers thate not

supported by a given database.

As all applications fetch their driver from the alaase, it is
impossible to forget to upgrade an applicationpag as it uses
Drivolution. If the driver upgrade contains impartasecurity
upgrades, not only are the important applicatigngraded, but
so are the small management support scripts so ofterlooked
by DBAs that can also become security threats.

5.2 Dynamic Client Reconfiguration for

Master/Slave Failover

Many organizations use master/slave configurationachieve
higher availability. When the master node needbeastopped
for maintenance operations, it is necessary to alntailover
all client applications to the slave node. Thebfaik operation
must be applied to all database clients when thetanas
restarted. This process usually requires complestributed
application reconfiguration operations and is qait@r-prone.

Application
Drivolution bootloader

DBnmasterdriver ” DBgpave driver

1o of P

A 4 v

D leave

vD Bmasler

Drivolution Drivolution
Server Server
DB, driver DB, driver

DB; driver DB, driver

Figure 4. Dynamic client reconfiguration to operate a
master/dave failover

Drivolution offers seamless driver upgrades to ntlie
applications. Instead of having one generic drifer all
purposes, it is now possible to pre-generate e lagmber of
pre-configured drivers to reconfigure client apalions on-the-
fly. Figure 4 shows a scenario where an applicatiaa to be
reconfigured from a master to a slave database dor
maintenance operation on the master node.

In this example, two drivers, DRserand DBy, have been pre-
generated to connect to the master and slave databa
respectively. Whatever host name is found in the. YRecified

by the client application, it is ignored, and thévers are pre-
configured to always connect to the same databise.client
URL is only used by the Drivolution bootloader tontact a
Drivolution server.

As long as the master database is active, all etjins are
given the DR, serdriver to connect to the master node (step 1 in
Figure 4). When the master node needs to be stofped
maintenance, and the traffic must be redirectedhto slave
database, all applications have to be reconfiguféés can be
easily performed by marking the RRdriver as expired and
providing the DBy driver as the new driver (step 2). All
clients will upgrade their driver using this newver, that will
connect them to the slave database (step 3). Anattieer
upgrade from DB, t0 DBaser iS uUsed for the failback
operation when the master becomes available again.

Drivolution offers a way to reconfigure simultansbu all
applications from a single point. Drivers could Wetten in
such a way that their configuration is generatedhenfly by the
database’s Drivolution server and sent to the tlighis way,
client-side configuration is no longer needed. Abent
applications are usually in greater number thanalute
instances, especially in replicated environmenkss tis an
advantage.

5.3 Middleware-Based Database Replication
Sequoia [12] is an open source database replicatiddleware
used in mission-critical production environmentsq@oia offers
a JDBC driver with failover capabilities that neetts be
installed in client applications. Sequoia driveatk to replicated
Sequoia controllers that implement the databassering logic.
Controllers use the database legacy JDBC driveextess the
database replicas. Sequoia can handle heterogerchaster
configurations, regardless of whether the databagines have
different versions but come from the same vendora®
different engines from different vendors.

We have experimented with various configurations of
Drivolution in Sequoia, corresponding to differeaal clustered
application use cases. We show how driver deploysnand
upgrades are performed in these different scenarios

5.3.1 Legacy Environment

When no component of the system supports Drivalugipall, it
is necessary to use a dedicated Drivolution sethagracts as a
separate service to distribute drivers. Figurevegian example
of such configuration.

The client applications have to be configured tovjae the
bootloader with two connection URLs. One URL is dige

contact the Drivolution server, and the other URLpassed to
the actual driver implementation.

Sequoia driver upgradeSequoia uses its own wire protocol
between drivers and controllers. Compatibility dtieg is done
at connection time to ensure that protocol versiaiiks work
together. Drivers are backward compatible with blde
controllers. Sequoia drivers are also capable dbraatic
failover, so that they always end up connecting tbmpatible
controller, as long as one is available. By addingew driver in
the Drivolution server and making it available tt dient
applications, the cluster will upgrade automaticadl this new
version. If Sequoia controllers are stopped, upeplacnd
restarted one-by-one, drivers can be upgraded camily
without any noticeable interruption for the apption.

Database driver upgradelf the cluster is homogeneous, it is
possible to install a new driver for all replicag ance.
Depending on the configuration, some databases @yhase)

must use non-transactional persistent connectiorizetable to
use features such as temporary tables. This impties

connections cannot be replaced before being clodeetefore,
nodes must be temporarily disabled and re-enabledrtew all
connections around a consistent checkpoint. A gmagtice is
to perform this operation on one node first, tooghhat the new
driver is working properly. If the new driver doest work, it is

possible to downgrade the driver by restoring thieroversion
on the Drivolution server. Once the node has arratiomal

driver, it can be re-enabled and resynchronizedn friis

checkpoint by the Sequoia controller.

Applicatior Applicatior

Drivolution bootloader Drivolution bootloader

"

Sequoia driver 1 Sequoia driver LSequoia driver 2

K/

Sequoia controller Sequoia controller

Drivolution bootloader Drivolution bootloader

L J
DB, driver| DB, driver] o | DBsdriver| DB, driver

.
¥ v
Drivolution
Y X Server 3 3
DB, | | DB, | |——=| | DBs DB,
DB, driver

DB, driver

lllllllllll’ DB3driVer <llllllllllll

DB, driver
Sequoia
driver 1
Sequoia
driver 2

O

Figure 5. Standalone Drivolution server asadriver
distribution servicein the Sequoia the cluster

This configuration has the benefit of controllingvers for all

cluster resources from a single centralized pdilowever, this
setup is sensitive to administrator errors, siricés ieasy to
assign a wrong driver for a given resource. Ordthenside, the
Drivolution server can become a single point oifa. It is then
necessary to replicate it either using some hateltya technique
or active-active configurations even with weak dstesicy since
updates to the Server are infrequent.

5.3.2 Highly Available Hybrid Setup

Since Sequoia controllers give applications thesitin that they
are conversing with a single database, we alsoeimphted a
version of Drivolution for Sequoia controllers. Big 6 shows a
configuration where the Drivolution server is emtbed in

Sequoia controllers. The Server manages the drifeerdoth

Sequoia clients and underlying database replicadiké) the

previous configuration (5.3.1), the Drivolution eer is

replicated in each controller, preventing it fromirg a single
point of failure. This implementation leverages tBequoia
replication infrastructure to synchronize Drivobrti servers so
as to always provide a consistent state.

Sequoia driver upgrade: In this Drivolution-compliant
implementation, client applications do not needuse dual-
URLs to specify the location of a remote Drivoluticerver.
Sequoia JDBC URLs can contain multiple host nanassjn
‘idbc:sequoia://controllerl,controller2/db’. boaddlbers exploit
this information to load balance their requests qeaform
failover, if the first host in the list becomes ua#able. When a
new driver is added to a Drivolution server, it ifstantly
replicated to other Drivolution servers. Therefosd, client
applications can be upgraded no matter which sethey are
connected to.

Applicatior Applicatior

Drivolution bootloader Drivolution bootloader

P>

Sequoia driver 1

v

Sequoia driver LSequoia driver

%

| A

Sequoia controller Sequoia controller

Drivolution Server| Drivolution Server|
—
eee—

Sequoia driver] Sequoia driver [l]
Sequoia driver P| Sequoia driver P
DB, driver ﬂ-,. <+ ‘¢" DB, driver
DB, driver * ..‘ DB, driver
DB driver " DB, driver
DB, driver - DB, driver

[] u —————
L] |}
L] |}
Ui .
» |

Drivolution bootloader Drivolution bootloader

DB, driver | DB, driver DBs driver | DB, driver

3 3 3 3

Figure 6. Drivolution servers embedded in Sequoia
controllers

Database driver upgradeEach bootloader installed in the
controllers accesses the locally-embedded Drivatusierver as
if it were a standalone service for the databagpéicees. Each
Server contains all drivers for all replicas in ttlaster, which
eases backend transfer between controllers for tem@nce
operations. Moreover, all database driver upgradas be
performed without interruption of the controller changes in
the configuration files, by simply making them dshle in the
Drivolution server.

Sequoia is a Java middleware that already reliegMX [14]

for its management. Therefore, it is easy to irdegrin a
common console the management of Drivolution witle t
existing cluster management tools. Moreover, théezided
database approach used in our implementation alleasy
integration with other applications.

5.4 Customized Driver Delivery

Some drivers are split into multiple packages thae to be
configured separately, depending on which featuthe
application requires. We describe how Drivolutian de used
to hide this complex configuration from client aipptions.

5.4.1 Assembling Drivers on Demand

Most drivers externalize their localized messagedifferent
internationalization packages. This is, for exampie case for
Oracle with a large NLS (National Language Supppéatkage
or Apache Derby with small packages per countryvaution

servers can deliver the appropriate driver versigih the exact
required feature set to each application. Theseedrican be
stored statically in the database or be generatadndically by
aggregating packages. This prevents applicatiom®s floading
an unnecessary large driver that contains featno¢sused by
the application.

If a PostgreSQL database contains a geographidalbate
along with other regular databases, it is not remngsfor all
applications to get the GIS (Geographic Informati®ystem)
extensions. Drivolution can help in providing or®JS clients
with GIS extensions. The required extensions aegicsily
encoded in the connection URL. However, the bodgoaould
also lazily detect a required extension through
ClassNotFoundException trapped by its classloadEne
Drivolution server would then be contacted to pdevithe
corresponding extension as an additional driver.

The DB2 JDBC driver installation guide [4] specifighat
applications planning to use Kerberos security khadd a set
of 12 libraries: ibmjcefw.jar, ibmjlog.jar, etc. @MApplications
requiring Kerberos would get all these packagesouttin

Drivolution without any configuration. As driversealoaded in
a separate classloader, this also avoids any comfith similar

libraries required by other components of the ajapibns.

5.4.2 Drivolution as a License Server

IBM DB2 has two licensing models: per-CPU and psgru
When using the per-user licensing model, eachtcéipplication
must use a license key that is provided in a sépgea file.

Multiple strategies are possible to use DrivolutEs a license
management server.

Licenses can be statically assigned to clienthabdach time a
client connects it receives the same driver andnBe. This
approach avoids any conflicts or starvation, busihot very

flexible. A more dynamic solution marks drivers egired as
soon as they have been delivered to a client. Dlotidnder can
notify the Drivolution server when the driver isloaded to give
back its lease and to allow the driver to be redusg another
client. However, the Drivolution server must beeabd detect
when the client application terminates, to prewdmters from

holding a license forever.

If the Drivolution server and bootloader are usagledicated
connection, it can be used as a failure detectbrthé
Drivolution server is tightly integrated with thatdbase, it can
check if any connection with the client is stilltime in the
database engine. Otherwise, the Drivolution secaer wait for
the client lease to expire and, if no lease ren@eaimand has
been issued by the bootloader, declare the dnieedf

In all scenarios, Drivolution can easily be extehds a central
management location for database licenses reqiyedlient
applications. Licenses can even be renewed or dpdra
dynamically without having to interrupt client ajmaitions.

6. CONCLUSION
If DBMS vendors united behind a common standarde wir
protocol for the application-driver-DB engine commation,

then driver lifecycle management would be easyhénabsence
of such agreement, though, it is necessary to geoaistandard
bootstrap infrastructure that enables easy lifecyghnagement
even in the presence of diverse legacy databagersiri

We described Drivolution, a new approach to disteb
install and upgrade database drivers, that is paest to client
applications. We implemented Drivolution for Jaymplcations
and JDBC-compliant database drivers. We have arghed
benefits for the DBA’s management tasks in hetenegas
environments or complex, highly available databekssters.
Drivolution enables seamless dynamic reconfiguratiof
applications and delivery of custom drivers.

We believe it is feasible — even in the short ternfor
standard APIs, such as JDBC or ODBC, to provide
Drivolution bootloader that will be able to load yaAPI-
compliant driver. Language specific bootloaders edsp be
built, provided that dynamic code loading is avaliéa With
such Drivolution implementations, system administrawill be
able to upgrade in one step hundreds of driversclient
applications from a single location with zero doww.

7. ACKNOWLEDGEMENTS

We would like to thank Steve Dropsho, our shepha@@s&iuli
and Nick Briggs, and the anonymous reviewers fogirth
valuable feedback. We are also thankful to the @Gaent
customers and staff who have inspired this work.

8. REFERENCES

[1] E. Cecchet and G. Cande®sivolution Developer’'s Guide
version 1.0- http://sourceforge.net/projects/drivolution/

[2] A. Descartes and Tim BunceRrogramming the Perl DBI
— O'Reilly & Associates, 2000.

[3] Drivolution web site —
http://sourceforge.net/projects/drivolution/

[4] 1BM DB2 JDBC driver installation guide -
http://publib.boulder.ibm.com/infocenter/db2luw/igiex.j
sp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm.

[5] S. Liang and Gilad Brachabynamic Class Loading in the
Java Virtual Machine- OOPSLA'98, October 1998.

[6] Microsoft White Paper Match.com Halves Server Farm,
Doubles Speed with ASP.NET and Windows Server
http://download.microsoft.com/documents/custometeni
ce/ 6740_Match.com.doc, 2004.

[71 MySQL Enterprise drivers —
http://www.mysql.com/products/connector/

[8] MySQL supported platforms —
http://www.mysql.com/support/supportedplatforms/

[9] S. Newman and Jim GrayWhich Way to Remote SQE?
Database Programming and Design, v4.2, Dec. 1991.

[10] James Norton Bynamic Class Loading for C++ on Linux
— Linux Journal, May 2000.

[11] Pair networks -
http://www.pair.com/support/knowledge_base/our_oekw
_and_servers/ server_configurations.html

[12] Sequoia Project. http://sequoiadb.sourceforge.net/

[13] R. Strahl -Dynamically executing code in .NetWest
Wind whitepaper, http://www.west-wind.com/, 2002.

[14] Sun Microsystems Java™ Management Extensions
Instrumentation and Agent Specification, v1.2002.

