
 1

Drivolution: Rethinking the Database Driver Lifecycle

Emmanuel Cecchet
University of Massachusetts & Aster Data Systems
140 Governors Drive, Amherst, MA 01003, USA

cecchet@cs.umass.edu

George Candea
EPFL & Aster Data Systems

IC-DSLAB, Station 14, 1015 Lausanne, Switzerland

george.candea@epfl.ch

ABSTRACT
The current design of database drivers – a necessary evil for
interacting with a DBMS – imposes undue burdens on those
who install, upgrade, and manage database systems and their
applications. In this paper, we introduce Drivolution, a new
architecture for DB drivers that reduces the cost, risk, and
downtime associated with driver distribution, deployment and
upgrade in large production environments.

We view DB drivers as part of the DB schema, so Drivolution
stores drivers in the database itself. Drivers are dynamically
downloaded and installed by a small bootloader that resides
within each client applications. Downloading, installing and
upgrading drivers occurs transparently to applications, and
existing DB management mechanisms are used to define and
enforce desired security policies. We show how Drivolution can
be integrated into legacy DB engines, replication middleware,
and applications, without requiring changes to the server or
client applications. We present several case studies that illustrate
the use of Drivolution in production environments.

Categories and Subject Descriptors
H.2 [DATABASE MANAGEMENT]: Database Administration
D.2.13 [Reusable Software]: Reusable libraries.

Keywords
Database driver, management, lifecycle, online upgrade.

1. INTRODUCTION
Despite the standardization of database APIs, the heterogeneity
of servers and application platforms is daunting. For example,
the MySQL DBMS [7] officially supports Connector/NET,
Connector/ODBC, Connector/J (Java), Connector/MXJ,
Connector/PHP, mysqlclient (C API), mysqli (PHP),
DBD::mysql (Perl), MySQLdb (Python), DBD::MySQL &
ruby-mysql (Ruby) and MySQL++ (C++). This does not include
independently developed APIs such as TCL or Eiffel wrappers.

Such heterogeneity poses a significant challenge in large
production environments that evolve over time. It is common to
see a large number of diverse client applications, even if they all
access a single database instance. Merely upgrading the client
side drivers for the one database can turn into a complex
problem spanning multiple architectures and platforms and

requiring a broad set of skills and expertise among the
operations staff.

Even starting out with a single database version on a single
platform, large deployments inevitably become heterogeneous
over time, as they evolve to meet business needs. The diversity
of drivers is thus compounded by the heterogeneity of database
servers and platforms on which they run; for example, MySQL
is officially supported on 63 different platforms [8].

The problem becomes even more acute in replicated DB
environments, where upgrading database drivers on DBMS
clients easily becomes a more complex problem than upgrading
the database itself, because it needs to take into account the
Cartesian product of the set of drivers and the set of databases
running in the organization. This complexity is a challenge in
hosting centers and large web sites. For example, Pair
Networks’ 500 web servers host many applications (in PHP,
Ruby, Perl, etc.) that access 100 MySQL databases [11], and
Match.com has more than 100 web servers accessing a single
database cluster of only a few machines [6].

We see four major problems that have an important practical
impact on large production environments: (1) driver distribution
is separate from the database engine, which can easily lead to
incompatibilities and mismatches between drivers and
databases, (2) driver installation requires manual operations on
each client machine, (3) driver upgrades are disruptive and
require applications to be reconfigured and restarted, and (4)
malicious applications can use specifically crafted drivers to
exploit security holes in the database specific network protocol
or attack database servers with buffer overflow techniques.
These combined issues lead to high operational costs and
foregone revenue due to application downtime.

In this paper we describe Drivolution, an alternative to the
traditional database driver architecture. With Drivolution,
drivers are stored in the database or the replication middleware
and are distributed by the server to its clients on-demand. This
way, driver distribution and deployment is managed from a
centralized location, closely associated with the database.
Clients are guaranteed to get the correct driver version to access
the desired database. A generic client-side bootloader downloads
and executes the driver code provided by the database. This
bootloader is simple and almost never needs upgrading, much
like an operating system bootloader. The bootloader can
download multiple drivers and switch a client from one version
to another to achieve driver upgrades that are transparent to the
application.

We implemented Drivolution for the popular JDBC API and
experimented with it in the context of the Sequoia [12] database
clustering middleware. We show how Drivolution can be used in
various configurations to provide seamless driver distribution,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Middleware’09, Nov. -Dec. 2009, Urbana Champaign, Illinois, USA.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

 2

installation and upgrades for large scale setups involving legacy
applications and databases. The ability of Drivolution to co-exist
with current technologies and legacy components offers a
smooth path for making Drivolution a core service of DBMSes.
We hope to motivate adoption of the Drivolution architecture in
other production DBMSes. Drivolution is freely available [3].

The rest of this paper is structured as follows: Section 2
describes the current state-of-the-art in database drivers and the
issues that arise from their current lifecycle. Section 3 and 4
present the Drivolution concepts and design. Section 5 gives
multiple use cases of Drivolution with the Sequoia database
replication middleware and discusses the pros and cons of each
configuration for driver installation and upgrades in production
environments. Section 6 concludes the paper.

2. CURRENT STATE-OF-THE-ART
State-of-the-art databases today have adopted a fairly uniform
way of managing DB drivers. The typical lifecycle is:

1. Get an appropriate driver package from vendor
2. Install the driver on the client application machine
3. Configure the client application to use the driver
4. Start the application and load the database driver
5. Connect to database and check protocol compatibility
6. Authenticate
7. Execute requests

A driver update requires the following steps:

8. Stop the application
9. Uninstall old driver
10. Repeat steps 1 through 7

There are considerably more driver instances deployed than
DBMS instances. First, there are many more client applications
accessing databases than database instances executing queries.
Second, as applications can run on a large variety of platforms
and middleware, drivers generally have to support many more
architectures than database engines, which are designed for the
major operating systems and hardware architectures.

Driver diversity is a major challenge in practice. Drivers provide
support for different programming languages and APIs.
Diversity also arises from the lack of standardization in
communication protocols between client application and
database engines. Despite several efforts [9], many protocols
still co-exist in most enterprise setups.

Step 1 above requires the application developers to know in
advance which database version is going to be used at
deployment, if they want to ship the application with the driver.
This might not be possible a priori or the driver licensing terms
might not allow its redistribution with an application. Any
resulting version mismatch between the driver and the database
would prevent the application from accessing its database.

Steps 2 and 3 can be relatively easy if the machine hosting the
application connects to a single database and the driver comes in
a package that automates the installation process. If an
application needs to access multiple databases using different
driver versions, installation and configuration quickly become
complex. Each driver implementation needs to be loaded in a
separate namespace and this can be an issue if the drivers have
not been designed to co-exist in heterogeneous environments.
Driver settings incompatible with database settings also prevent
proper interactions with the database.

It is only during step 4 that the compatibility between the
application and the driver is tested. The main sources of
incompatibility are mismatches between the binary format of the
driver and the hardware platform or incompatible
compilation/linking options between the driver and application.

Step 5 is where the compatibility between the database and the
driver is checked. Note that not all implementations check their
interoperability at the protocol level. In such cases,
incompatibility errors might be detected at an even later stage
than connection time.

Step 6 can introduce additional errors if the driver does not
support authentication methods that are required by the
database. It is only if this step is successful that the application
can finally issue requests to the database.

Driver updates are not necessarily released simultaneously for
all platforms. This means that large setups with many
applications accessing a database have to perform updates one
by one for each application. The process requires the application
to be stopped for the driver to be updated. If the upgrade is not
automatic or does not support the specifics of the installation
(multiple versions installed, multi-database setups, etc…) a
manual uninstall must be performed first before re-iterating
through all the steps (1 to 7). Not only is the update process
disruptive for the application, but it is also error prone, which
lengthens the downtime of the application. Often, software
upgrades are delayed or simply not applied because of their
complexity or the risks associated with the process. This can
leave potential security holes open and compromise both
applications and databases.

3. DRIVOLUTION DESIGN
We propose a new design for managing the lifecycle of database
drivers that simplifies their installation, deployment and
management on client machines. Figure 1 gives an overview of
the Drivolution architecture.

Figure 1. Drivolution architecture overview

3.1 Overview
In Drivolution, drivers are normally stored in the database in a
regular table. Alternatively, a standalone external Drivolution
server can be used as a service to distribute drivers. Small,
stripped-down Drivolution bootloaders are used by client

Database

Standalone
Drivolution Server

In-Database
Drivolution Server

Application 1

Driver 2

Driver 1

Drivolution
protocol

Drivolution
bootloader

Drivolution
bootloader

Driver 3

Database
protocol

Driver 2

Driver 3

Driver 2 Driver 3
Database protocol

Application 3 Application 2

 3

applications to interface to a Drivolution Server module to
download the appropriate driver code corresponding to the
database. Unlike drivers, Drivolution bootloaders hardly ever
need to be updated due to their simple and limited feature set
(Section 3.1.1). Drivolution servers implement the Drivolution
protocol (Section 3.4) and are separate from the database
protocol. This allows applications that do not use Drivolution to
still access the database with a conventional driver like
Application 3 in Figure 1.

Drivolution uses leases to limit the time for which distributed
drivers are valid, like DHCP does for IP addresses. The
Drivolution bootstrap protocol is inspired from DHCP and has
only three messages: DRIVOLUTION_REQUEST,
DRIVOLUTION_OFFER and DRIVOLUTION_ERROR. The driver
file transfer can use an FTP-like protocol or an encrypted and
authenticated equivalent in insecure environments.

The Drivolution bootloader must first send a
DRIVOLUTION_REQUEST message (to a specific server or to a
list of trusted servers) containing the name of the database and
corresponding credentials, the API name (e.g. JDBC, ODBC…)
with an optional version, the client platform (e.g. JRE 1.5,
windows-i586, linux-x86_64…) and additional options in case
multiple drivers matching the previous criteria are available.

Based on the information received, the Drivolution Server
queries its information schema to find the appropriate driver.
Further information on driver match making can be found in the
Drivolution documentation [1]. If no driver can be found, a
DRIVOLUTION_ERROR message is sent back with an optional
detailed error message in plain text (invalid database, no driver
for specified API/platform, etc…). If multiple drivers match the
request, the first matching driver is chosen. A
DRIVOLUTION_OFFER message is then sent back to the
bootloader. The message contains the lease time, the driver
location and format. The driver is then downloaded.

The transfer can be secured using an SSL channel, in which case
the bootloader verifies the Drivolution server's SSL certificate
(to make sure the server is legitimate) and the driver cannot be
tampered with during transfer by a potentially malicious
middleman. It is also possible to sign drivers, and have a
separate trusted wrapper in the bootloader verify signatures.

In the case of replicated databases, multiple replicas can answer
client requests and this is also true for Drivolution. As for
DHCP, a DRIVOLUTION_DISCOVER message can be broadcast
to the network with the same information as a request message.
All Drivolution servers that have an appropriate driver send a
DRIVOLUTION_OFFER message back. The bootloader can then
send a unicast DRIVOLUTION_REQUEST to one of the
Drivolution servers. This mechanism allows databases to be
added or removed from a database cluster in a decoupled
manner, without having to reconfigure client applications.

The DHCP-like protocol employed by Drivolution offers a
tradeoff between manageability and security: on one hand, it
makes the distribution of drivers easy; on the other hand, it
exposes Drivolution to man-in-the-middle attacks. At the same
time, unencrypted driver transfer channels offer opportunities
for drivers to be replaced with malicious ones. In its default
configuration, Drivolution uses encrypted authenticated SSL
channels (described above). It is important for administrators to
understand that switching to a less secure configuration can lead
to serious system compromise, and this risk is often not worth it.

3.1.1 Drivolution Bootloader
The Drivolution bootloader is an interceptor that substitutes the
driver in the client application. It simply intercepts the connect
method call of the API to capture the necessary information to
retrieve the driver from the Drivolution Server in the DBMS.
Once the driver code has been transferred, it is loaded
dynamically into the application’s memory. The application can
then transparently use the driver, without consideration of how
installation occurred.

Dynamic code loading may not be available in all languages on
all platforms, but it can be implemented securely in most
popular environments such as Java [4], .NET [13], C++ [10] or
Perl using DynaLoader [2]. Connection configuration options
are passed to the installed driver, which allows the application to
continue to use database driver specific options or extensions.
All other calls are passed through to the driver. Connection
options can also be configured and enforced on the Drivolution
server, which then sends a pre-configured driver to the client.

Drivolution bootloaders are generic to the extent that only one
implementation per API and platform is needed. They are
database or driver implementation neutral. For example, we
have implemented a single Drivolution JDBC bootloader in Java
[3] that supports all JDBC drivers of all databases on all
platforms. It has the ability to load multiple implementations of
drivers and to switch from one implementation to another, so
that new connect calls can use a more recent driver version.

Bootloaders are only designed to support one fixed API and do
not support migration among different APIs. However, as only
the connection establishment part of the API is intercepted,
bootloaders do not have to be changed if other parts of the API
are changed. API changes in Drivolution are not a limitation for
high availability, as the application would have to be changed to
use the new API anyway. Drivolution is meant for applications
that need to dynamically upgrade their drivers while keeping the
same database API.

Dynamic driver updates that are transparent to applications may
tempt administrators to deploy updates without rigorous testing.
However, good testing practices are at the same time easier to
implement. For example, a new driver version could be
deployed to a single client machine with a short lease; if it works
correctly, then it can be deployed more widely.

3.1.2 Updating the Driver
If the application in which the bootloader is hosted has not
terminated before the lease has expired, the bootloader contacts
the Drivolution Server to either renew its lease or get a new
version of the driver by resending a DRIVOLUTION_REQUEST
message. This allows Drivolution bootloaders to poll regularly
for driver updates in critical applications that are never stopped.

When the driver needs to be upgraded, three replacement
policies are available to transition existing connections (more
details in Section 3.3). New connections always use the most
recent downloaded driver. Existing connections using the old
driver must be terminated before transitioning to the new driver.
Depending on the policy, existing connections remain active
until they have terminated their current transaction or until they
are explicitly closed by the application, or forced to close.

When the lease has expired, but no new driver is available for
replacement, a DRIVOLUTION_ERROR is sent back. The policy
to close active connections is based on the current lease.

 4

Existing connections can remain active with the revoked driver
until they terminate by an explicit closing by the application. In
that case, the bootloader blocks new connection requests and it
returns errors explaining the absence of a suitable driver.

3.2 Driver Lifecycle in Drivolution
Drivolution offers a simpler lifecycle than the current state-of-
the-art described in Section 2. It consists of the following steps:

1. Get an appropriate Drivolution bootloader
2. Install the Drivolution bootloader on the client

application machine
3. Configure client application to use Drivolution bootloader
4. Start the application

When a driver update is needed, all clients can be upgraded in a
single step:

1. Add new driver to the Drivolution Server

The number of steps required for installation is reduced since,
once the bootloader has been installed, all incompatibilities
between database driver and server are avoided. The upgrade
process drops from ten steps per client application to one simple
insert operation on the Drivolution Server.

Driver upgrades are provided typically by database vendors. The
database administrator (DBA) is responsible for database and
driver upgrades. The Drivolution server can provide additional
sanity checks to help the DBA make sure that newly installed
drivers are compatible with the current database. For example,
the upgrade can be performed on a test machine and then pushed
to all other machines.

Effective driver renewal on the client side depends on the lease
time that has been chosen. The first lease can be set to be very
short and, if there are problems, the administrator can revert the
driver in the Drivolution server. Shorter lease times allow faster
reaction to upgrades but higher traffic to the Drivolution Server.
Settings ranging from an hour to a day are suitable.
Alternatively, a dedicated channel between the Drivolution
bootloader and Server allows the Drivolution Server to
immediately signal that a new driver is available. Revoking
connections can be performed by the bootloader or enforced in
the database server, if the Drivolution Server is tightly integrated
with the database engine.

A misconfiguration or unavailability of the Drivolution Server
can impact a large number of applications, similar (in the worst
case) to a database outage. Note that the Drivolution Server can
be replicated and a failure should have a minimal impact on
already running applications since it only impacts new driver
requests or driver renewal requests.

3.3 Schema for In-Database Drivers
We view drivers as being part of the database schema, and thus
they belong to the database system tables.

We extend existing database information schema with a table
that stores drivers and their metadata. This way, no new
development is required and standard database mechanisms can
be used to store drivers in the database. New drivers can be
installed using simple INSERT statements and retrieved using
regular SELECT queries. Table 1 describes a definition of the
driver table that can be stored in the database information
schema. Data type definitions follow the ANSI SQL 2003
standard. Each driver supports a specific set of APIs and
platforms such as JDBC3 on JRE 1.5 or ODBC 3.5 on

linux_x86_64. NULL values for API version numbers or
platform specifications mean that all versions or platforms are
supported, respectively. The driver version number is optional.

Table 1. Information schema driver table definition

Column name Data type Description

driver_id INTEGER
NOT NULL
PRIMARY
KEY

Primary key identifying drivers (to
be used as a foreign key by other
information schema tables for
integrity checks)

api_name VARCHAR
NOT NULL

Supported API name (e.g. JDBC,
ODBC…)

api_version_major INTEGER API major version number

api_version_minor INTEGER API minor version number

platform VARCHAR Name of the platform(s) supported

driver_version_major INTEGER Driver major version number

driver_version_minor INTEGER Driver minor version number

driver_version_micro INTEGER Driver micro version number

binary_code BLOB NOT
NULL

Binary of the driver code

binary_format VARCHAR
NOT NULL

Format of the binary code (e.g.
JAR, ZIP…)

Standard database security mechanisms can be used to limit
access to this table to a specific set of users or client IP
addresses. Furthermore, to refine the management operations,
we add a driver_permission table to the information schema that
defines access rights and update policies for drivers. It would be
possible to expand the database GRANT command to handle
such policies.

Table 2. driver_permission table description

Column name Data type Description

user VARCHAR User name

client_ip VARCHAR IP address of the client

database VARCHAR Database name

driver_id INTEGER NOT
NULL REFERENCES
driver(driver_id)

Identifier of the driver in
the driver table

driver_options VARCHAR Driver configuration
options

start_date TIMESTAMP Date from which the
driver can be downloaded

end_date TIMESTAMP Date until which the
driver can be downloaded

lease_time_in_ms BIGINT Maximum lease time in
ms

renew_policy INTEGER
 0: RENEW
 1: UPGRADE
 2: REVOKE

Policy to apply when a
lease needs to be
renewed.

expiration_policy INTEGER
 0: AFTER_CLOSE
 1: AFTER_COMMIT
 2: IMMEDIATE

Policy to apply when
lease has expired
(encoded as an integer).

transfer_method INTEGER
-1: ANY
>=0: Protocol id

Transfer protocol to use
to download the driver
code.

 5

Table 2 presents the driver_permission table. It defines which
client gets which driver for each database instance. This is
especially useful when different database instances require
different extensions, e.g. GIS (Geographic Information System),
NLS (National Language Support), or specific authentication
methods, and thus different drivers.

Additional client specific configuration options (driver_options)
can be given to instruct the bootloader to enforce particular
settings at driver loading time. The validity of a driver can be
defined by dates (i.e. start_date and end_date) or by a lease time
after which the bootloader has to recheck if a new version of the
driver is available. The method used to transfer the driver code
can be restricted to a specific secure protocol or use any
protocols supported by the bootloader and the Server. The
protocols are details in the Drivolution documentation [1].

When the lease has expired and must be renewed, the
renew_policy defines the action the bootloader must take. It can
continue to use the same driver (RENEW), download a new
driver (UPGRADE) or terminate to use the current driver even
though there is no replacement available (REVOKE). The
expiration_policy parameter defines when the renew policy must
be applied. The options are to wait for all current connections to
be closed (AFTER_CLOSE), terminate connections as soon as
they have committed their in-flight transactions
(AFTER_COMMIT) or terminate immediately (IMMEDIATE).

3.4 Drivolution Protocol
The Drivolution protocol is used by the Drivolution bootloader
to negotiate the appropriate DB driver with the database. A
complete specification of the protocol and an open source Java
implementation can be found on the Drivolution web site [3].

3.4.1 Getting the Appropriate Driver
Table 3 describes the Drivolution bootstrap protocol in general
terms. For clarity, we omit the details regarding encryption and
signature verification.

Table 3. Drivolution bootstrap protocol description

Drivolution bootloader Drivolution Server

send(host, port,
 DRIVOLUTION_REQUEST)

 if no driver matching request {
send(DRIVOLUTION_ERROR)
} else {
 send(DRIVOLUTION_OFFER)
}

FILE_REQUEST(driver_file)
 FILE_DATA(binary_code)
recheck_time = current_time +
expiration_time_in_ms
decode(binary_format,binary_code)
load(decoded_binary_code)

The Drivolution bootloader must first open a connection to the
DBMS and then send a DRIVOLUTION_REQUEST message.
The message contains the following information:

- name of the database to be accessed with optional
user/password information if authentication is required,

- API name (e.g. JDBC, ODBC…) with an optional version,

- client_platform (e.g. JRE 1.5, windows-i586, linux-x86_64…)
on which the bootloader is running,

- optional preferred binary format and driver version number
in case multiple drivers matching the previous criteria are
available.

Based on the information received, the Drivolution Server
queries the information schema to find the appropriate driver
(see section 4.1.1). If no driver can be found, a
DRIVOLUTION_ERROR message is sent back with an
optional detailed error message in plain text
(invalid database, no driver for specified API/platform, etc…). If
multiple drivers match the request, the first matching driver is
chosen. A DRIVOLUTION_OFFER message is then sent back
to the bootloader. The message contains one of the three
expiration policies presented in section 3.3 along with the lease
time, the driver location and format. The driver is then
downloaded using a transport protocol that can be secured
corresponding to the operating environment.

Table 4. Drivolution lease renewal protocol description

Drivolution bootloader Drivolution Server

if (current_time >= recheck_time)
 send(host, port,
 DRIVOLUTION_REQUEST)

 if (driver still valid) {
 send(DRIVOLUTION_OFFER)
} else if (new driver available){
 send(DRIVOLUTION_OFFER)
 FILE_DATA(binary_code)
} else { // no driver available
 send (DRIVOLUTION_ERROR)
}

if (renew_policy == RENEW) {
 recheck_time = current_time + expiration_time_in_ms
} else if (renew_policy == UPGRADE) {
 FILE_REQUEST(driver_file)
 recheck_time = current_time + expiration_time_in_ms
 decode(binary_format, binary_code)
 load(decoded_binary_code)
 connect_use_new_driver
 switch (expiration_policy) {
 case AFTER_CLOSE:
 wait_for_active_connections_closing
 break;
 case AFTER_COMMIT:
 close_active_connections_after_commit
 break;
 case IMMEDIATE:
 terminate_all_active_connections
 break;
 }
 unload_old_driver
} else if ((renew_policy == REVOKE) ||
 DRIVOLUTION_ERROR) {
 switch (current_expiration_policy)
 case AFTER_CLOSE:
 disable_new_connections
 wait_for_active_connections_closing
 break;
 case AFTER_COMMIT:
 disable_new_connections
 close_active_connections_idle_or_after_commit
 break;
 case IMMEDIATE:
 terminate_all_active_connections
 break;
 }
 unload_old_driver
}

 6

3.4.2 Driver update
If the application in which the bootloader is hosted has not
terminated before the driver validity has expired, the bootloader
contacts the Drivolution Server to either renew its lease or get a
new version of the driver by resending a
DRIVOLUTION_REQUEST message. This allows Drivolution
bootloaders to poll regularly for driver updates in critical
applications that are never stopped. bootloaders can use a
dedicated thread as a timer to contact the Drivolution Server as
soon as the timer expires, or they can wait lazily for an
application call to trigger the check.

Table 4 describes the driver renewal protocol. If the driver can
be kept for a new lease, a DRIVOLUTION_OFFER without data
file instructs the bootloader to continue to use the same driver.
When the driver needs to be upgraded, three replacement
policies are available to transition existing connections. New
connections always use the most recent downloaded driver.
Existing connections using the old driver must be terminated
before transitioning to the new driver. Depending on the policy,
existing connections remain active until they are explicitly
closed by the application (AFTER_CLOSE), or closed as soon
as they are idle or have terminated their current transaction
(AFTER_COMMIT), or are forced to close immediately
(IMMEDIATE). If the client uses a connection pool, the first
option might not be a good choice since connection renewal is
highly dependent on connection pool settings and application
load.

When the driver has expired but no new driver is available for
replacement, a DRIVOLUTION_ERROR is sent back. The
policy to close active connections is based on the current lease.
Existing connections can remain active with the revoked driver
until they terminate by an explicit closing by the application
(AFTER_CLOSE policy). In that case, the bootloader blocks
new connection requests and it returns errors explaining the
absence of a suitable driver. The other policies terminate
immediately all client connections (IMMEDIATE) or as soon as
they are idle or their current transaction completes
(AFTER_COMMIT).

4. DRIVOLUTION FOR LEGACY
DATABASE SERVERS
The Drivolution Server can clearly be implemented “from
scratch” as a new service of an DBMS engine, but it is also
fairly easy to provide Drivolution for legacy DBMSes. After an
overview of the server-side logic (Section 4.1.1), we present the
design of the in-database Drivolution server (Section 4.1.2) and
database-external Drivolution server (Section 4.1.3). We also
describe how Drivolution can run as a standalone service for
multiple DBs (Section 4.1.4).

4.1.1 Server Logic
The Drivolution Server side logic is relatively simple. Sample
code 1 shows the SQL statement to retrieve the appropriate
driver based on client preferences.
SELECT binary_format, binary_code
FROM information_schema.drivers
WHERE api_name LIKE $client_api_name
AND (platform IS NULL
 OR platform LIKE $client_platform)
AND ($client_api_version IS NULL
 OR api_version IS NULL
 OR $client_api_version LIKE
 api_version)

AND ($client_driver_version IS NULL
 OR driver_version IS NULL
 OR $client_driver_version LIKE
 driver_version)

Sample code 1. SQL request to retrieve driver based on
client preferences

If this statement is unsuccessful, a simple SELECT without
preferences (omitting the part of the statement in italics) can be
issued. If this statement does not return any row, then it means
that no driver is available for that client.

If the server contains a distribution table as described in Section
3.3, then that table should be queried first using the statement
illustrated in Sample code 2. This gives a short list of available
drivers for that client. This list can be further sorted with client
preferences as explained above.
SELECT driver_id
FROM information_schema.distribution
WHERE (database IS NULL
 OR database LIKE $user_database)
AND (user IS NULL
 OR user LIKE $client_user)
AND (client_ip IS NULL
 OR client_ip LIKE $client_client_ip)
AND (start_date IS NULL
 OR end_date IS NULL
 OR now() BETWEEN start_date AND end_date)

Sample code 2. Driver retrieval based on distribution table

Leases can be stored in a table that has the same format as the
distribution table. This table is used only for logging purposes,
but also to retrieve client information when a lease must be
renewed.

When a new driver needs to be added to the system, a new entry
is inserted in the drivers table. Obsolete drivers can be disabled
by either deleting them or setting the end_date to the
current_date. Bootloaders that have a dedicated connection with
the Server are notified immediately, others are upgraded as soon
as their current lease has expired.

4.1.2 In-Database Drivolution Server
When implemented in the DBMS engine, the Drivolution Server
directly responds to bootloader connections. It is possible to
only allow connections through the Drivolution Server to ensure
that client applications will only use drivers distributed by the
DBMS. Code signing techniques can be used to ensure only
certified drivers are used by the clients.

Alternatively, the Drivolution Server can listen on a different
port than the database engine to allow legacy drivers to access
the database using existing technology. Drivolution bootloader
requests can then be served concurrently.

Most of the core functionality of the Drivolution Server code
can be implemented in stored procedures to leverage existing
database technologies.

4.1.3 External Drivolution Server
When the database does not support the Drivolution protocol or
cannot be extended to support the Drivolution Server, it is
possible to implement it as an external process querying the
DBMS as a regular client application. Figure 2 shows how to
implement a Drivolution Server with legacy databases.

In step 1, the Drivolution bootloader queries the Drivolution
server. The server then connects to the database using a legacy
database driver to return the appropriate driver to the bootloader

 7

(step 3). Finally the bootloader can install the driver to connect
to the database (step 4).

Even though this requires the Drivolution server to use a legacy
driver, this solution has some benefits:

- When the legacy driver becomes obsolete, only the
Drivolution server driver needs to be updated (that is a
single machine) whereas no client machines require
changes.

- When the legacy driver becomes obsolete, it means that the
database has been upgraded, which is unlikely to happen
without stopping the database. Therefore, the driver at the
Drivolution server can be upgraded along with the database
during the same planned downtime window.

- The Drivolution server can be upgraded without
interrupting existing applications. If the Drivolution server
is unavailable while a bootloader tries to renew its lease,
the bootloader keeps its current implementation until the
Drivolution server is restarted.

Figure 2. Drivolution server architecture for legacy
databases

4.1.4 Standalone Drivolution Server
It is possible to have a single Drivolution server as a standalone
service providing drivers for a set of databases. This scenario
will be illustrated in 5.3.1. This can be useful in setups where
databases do not support Drivolution natively or where an
administrator wants to manage multiple database drivers from a
centralized point.

An option to implement a standalone Drivolution server is to use
an embedded database that does not require driver upgrades. As
the rate of updates on the driver table is very low, it is easy to
replicate the Drivolution server database for availability
purposes.

5. CASE STUDIES
In this section, we present several use cases showing how
Drivolution improves on the current state-of-the-art driver
lifecycle. Section 5.1 shows how Drivolution can help DBAs
administer heterogeneous DB systems; Section 5.2 presents a
master/slave setup where Drivolution simplifies reconfiguration;
Section 5.3 illustrates the use of Drivolution in replicated DB
setups; and Section 5.4 describes two ways in which Drivolution
can be used for customized driver delivery.

5.1 Simplifying Administration of
Heterogeneous DBMSes
A database administrator (DBA) in large organizations is often
responsible for a significant number of database instances. In
such corporate environments, various applications use different
database versions or even engines. If applications can have their
own lifecycle, DBAs must share and use a common
management infrastructure to administer all databases. This
means that all possible drivers have to be installed and
configured with the DBA management console.

Figure 3. Configuration with complete native support for

Drivolution

When all databases are fully Drivolution-compliant, a single
Drivolution bootloader has to be installed in the management
console. Figure 3 shows such a configuration. Each database
automatically provides the appropriate driver for the platform
that the management console is running on. The management
console can access seamlessly any database without having to
worry about driver configurations.

Table 5. Driver upgrades in a heterogeneous database for 2
DBAs with and without Drivolution

Tasks Current State-of-the-Art Drivolution

Accessing
a new
database

1. Download drivers for DBA1
platform

2. Configure DBA1 console to
find driver

3. DBA1 connects to db

4. Download drivers for DBA2
platform

5. Configure DBA2 console to
find driver

6. DBA2 connects to db

1. DBA1
connects to db

2. DBA2
connects to db

Database
driver
upgrade

1. Copy appropriate driver for
DBA1 platform

2. Remove DBA1 old driver

3. Restart DBA1 console

4. Copy right driver for DBA2

platform

5. Remove DBA2 old driver

6. Restart DBA2 console

1. Insert drivers
in database

2. Revoke old
driver

DBA Management Console

Drivolution bootloader

DB3 driver

DB3
Drivolution

Server
DB3 driver

DB4 driver

DB4
Drivolution

Server
DB4 driver

DB1 driver

DB1
Drivolution

Server
DB1 driver

DB2 driver

DB2
Drivolution

Server
DB2 driver Drivolution Server

Application 1

Drivolution bootloader

driver table

Driver 1

Driver 2

legacy
driver Driver 2

1

3

4

2

Legacy Database

 8

Table 5 shows an example of the procedures that have to be
performed by two DBAs for two administration tasks: access a
new database from their console and upgrade the database
driver. With Drivolution, the procedures are much shorter and
simpler. The same procedure simplification would apply to any
application connecting to the database.

In this configuration, driver upgrades are part of the database
upgrade process. Each database can be upgraded independently
of the others, without disturbing client applications. A tight
integration of the Drivolution server with the database allows for
additional compatibility checks to make sure that installed
drivers are compatible with the database engine. This way, there
is no possible confusion in installing drivers that are not
supported by a given database.

As all applications fetch their driver from the database, it is
impossible to forget to upgrade an application, as long as it uses
Drivolution. If the driver upgrade contains important security
upgrades, not only are the important applications upgraded, but
so are the small management support scripts so often overlooked
by DBAs that can also become security threats.

5.2 Dynamic Client Reconfiguration for
Master/Slave Failover
Many organizations use master/slave configurations to achieve
higher availability. When the master node needs to be stopped
for maintenance operations, it is necessary to manually failover
all client applications to the slave node. The failback operation
must be applied to all database clients when the master is
restarted. This process usually requires complex distributed
application reconfiguration operations and is quite error-prone.

Figure 4. Dynamic client reconfiguration to operate a

master/slave failover

Drivolution offers seamless driver upgrades to client
applications. Instead of having one generic driver for all
purposes, it is now possible to pre-generate a large number of
pre-configured drivers to reconfigure client applications on-the-
fly. Figure 4 shows a scenario where an application has to be
reconfigured from a master to a slave database for a
maintenance operation on the master node.

In this example, two drivers, DBmaster and DBslave, have been pre-
generated to connect to the master and slave database,
respectively. Whatever host name is found in the URL specified
by the client application, it is ignored, and the drivers are pre-
configured to always connect to the same database. The client
URL is only used by the Drivolution bootloader to contact a
Drivolution server.

As long as the master database is active, all applications are
given the DBmaster driver to connect to the master node (step 1 in
Figure 4). When the master node needs to be stopped for
maintenance, and the traffic must be redirected to the slave
database, all applications have to be reconfigured. This can be
easily performed by marking the DBmaster driver as expired and
providing the DBslave driver as the new driver (step 2). All
clients will upgrade their driver using this new driver, that will
connect them to the slave database (step 3). Another driver
upgrade from DBslave to DBmaster is used for the failback
operation when the master becomes available again.

Drivolution offers a way to reconfigure simultaneously all
applications from a single point. Drivers could be written in
such a way that their configuration is generated on-the-fly by the
database’s Drivolution server and sent to the client. This way,
client-side configuration is no longer needed. As client
applications are usually in greater number than database
instances, especially in replicated environments, this is an
advantage.

5.3 Middleware-Based Database Replication
Sequoia [12] is an open source database replication middleware
used in mission-critical production environments. Sequoia offers
a JDBC driver with failover capabilities that needs to be
installed in client applications. Sequoia drivers talk to replicated
Sequoia controllers that implement the database clustering logic.
Controllers use the database legacy JDBC drivers to access the
database replicas. Sequoia can handle heterogeneous cluster
configurations, regardless of whether the database engines have
different versions but come from the same vendor, or are
different engines from different vendors.

We have experimented with various configurations of
Drivolution in Sequoia, corresponding to different real clustered
application use cases. We show how driver deployments and
upgrades are performed in these different scenarios.

5.3.1 Legacy Environment
When no component of the system supports Drivolution at all, it
is necessary to use a dedicated Drivolution server that acts as a
separate service to distribute drivers. Figure 5 gives an example
of such configuration.

The client applications have to be configured to provide the
bootloader with two connection URLs. One URL is used to
contact the Drivolution server, and the other URL is passed to
the actual driver implementation.

Sequoia driver upgrade: Sequoia uses its own wire protocol
between drivers and controllers. Compatibility checking is done
at connection time to ensure that protocol versions will work
together. Drivers are backward compatible with older
controllers. Sequoia drivers are also capable of automatic
failover, so that they always end up connecting to a compatible
controller, as long as one is available. By adding a new driver in
the Drivolution server and making it available to all client
applications, the cluster will upgrade automatically to this new
version. If Sequoia controllers are stopped, upgraded and
restarted one-by-one, drivers can be upgraded concurrently
without any noticeable interruption for the application.

Database driver upgrade: If the cluster is homogeneous, it is
possible to install a new driver for all replicas at once.
Depending on the configuration, some databases (e.g., Sybase)

Application

Drivolution bootloader

DBmaster driver

DBmaster

Drivolution
Server

DBm driver

DBslave

Drivolution
Server

DBm driver

DBslave driver

1
2

3

DBs driver DBs driver

 9

must use non-transactional persistent connections to be able to
use features such as temporary tables. This implies that
connections cannot be replaced before being closed. Therefore,
nodes must be temporarily disabled and re-enabled to renew all
connections around a consistent checkpoint. A good practice is
to perform this operation on one node first, to check that the new
driver is working properly. If the new driver does not work, it is
possible to downgrade the driver by restoring the older version
on the Drivolution server. Once the node has an operational
driver, it can be re-enabled and resynchronized from its
checkpoint by the Sequoia controller.

Figure 5. Standalone Drivolution server as a driver

distribution service in the Sequoia the cluster

This configuration has the benefit of controlling drivers for all
cluster resources from a single centralized point. However, this
setup is sensitive to administrator errors, since it is easy to
assign a wrong driver for a given resource. On the downside, the
Drivolution server can become a single point of failure. It is then
necessary to replicate it either using some hot-standby technique
or active-active configurations even with weak consistency since
updates to the Server are infrequent.

5.3.2 Highly Available Hybrid Setup
Since Sequoia controllers give applications the illusion that they
are conversing with a single database, we also implemented a
version of Drivolution for Sequoia controllers. Figure 6 shows a
configuration where the Drivolution server is embedded in
Sequoia controllers. The Server manages the drivers for both
Sequoia clients and underlying database replicas. Unlike the
previous configuration (5.3.1), the Drivolution server is
replicated in each controller, preventing it from being a single
point of failure. This implementation leverages the Sequoia
replication infrastructure to synchronize Drivolution servers so
as to always provide a consistent state.

Sequoia driver upgrade: In this Drivolution-compliant
implementation, client applications do not need to use dual-
URLs to specify the location of a remote Drivolution server.
Sequoia JDBC URLs can contain multiple host names, as in
‘jdbc:sequoia://controller1,controller2/db’. bootloaders exploit
this information to load balance their requests and perform
failover, if the first host in the list becomes unavailable. When a
new driver is added to a Drivolution server, it is instantly
replicated to other Drivolution servers. Therefore, all client
applications can be upgraded no matter which server they are
connected to.

Figure 6. Drivolution servers embedded in Sequoia

controllers

Database driver upgrade: Each bootloader installed in the
controllers accesses the locally-embedded Drivolution server as
if it were a standalone service for the database replicas. Each
Server contains all drivers for all replicas in the cluster, which
eases backend transfer between controllers for maintenance
operations. Moreover, all database driver upgrades can be
performed without interruption of the controller or changes in
the configuration files, by simply making them available in the
Drivolution server.

Sequoia is a Java middleware that already relies on JMX [14]
for its management. Therefore, it is easy to integrate in a
common console the management of Drivolution with the
existing cluster management tools. Moreover, the embedded
database approach used in our implementation allows easy
integration with other applications.

5.4 Customized Driver Delivery
Some drivers are split into multiple packages that have to be
configured separately, depending on which features the
application requires. We describe how Drivolution can be used
to hide this complex configuration from client applications.

Application

Sequoia driver 1 Sequoia driver 2

DB1 driver

Sequoia controller

DB2 driver

DB1 DB2

Sequoia driver 1

DB3 driver

Sequoia controller

DB4 driver

DB3 DB4

Drivolution bootloader

Application

Drivolution bootloader

Drivolution Server

Drivolution bootloader Drivolution bootloader

Drivolution Server

Sequoia driver 1

DB1 driver
DB2 driver

DB4 driver

Sequoia driver 2

Sequoia driver 1

DB1 driver
DB2 driver
DB3 driver
DB4 driver

Sequoia driver 2

DB3 driver

Application

Sequoia driver 1 Sequoia driver 2

DB1 driver

Sequoia controller

DB2 driver

DB1 DB2

Sequoia driver 1

DB3 driver

Sequoia controller

DB4 driver

DB3 DB4

Drivolution bootloader

Application

Drivolution bootloader

Drivolution bootloader Drivolution bootloader

Drivolution
Server

DB1 driver
DB2 driver
DB3 driver
DB4 driver
Sequoia
driver 1
Sequoia
driver 2

 10

5.4.1 Assembling Drivers on Demand
Most drivers externalize their localized messages in different
internationalization packages. This is, for example the case for
Oracle with a large NLS (National Language Support) package
or Apache Derby with small packages per country. Drivolution
servers can deliver the appropriate driver version with the exact
required feature set to each application. These drivers can be
stored statically in the database or be generated dynamically by
aggregating packages. This prevents applications from loading
an unnecessary large driver that contains features not used by
the application.

If a PostgreSQL database contains a geographical database
along with other regular databases, it is not necessary for all
applications to get the GIS (Geographic Information System)
extensions. Drivolution can help in providing only GIS clients
with GIS extensions. The required extensions are statically
encoded in the connection URL. However, the bootloader could
also lazily detect a required extension through a
ClassNotFoundException trapped by its classloader. The
Drivolution server would then be contacted to provide the
corresponding extension as an additional driver.

The DB2 JDBC driver installation guide [4] specifies that
applications planning to use Kerberos security should add a set
of 12 libraries: ibmjcefw.jar, ibmjlog.jar, etc. The Applications
requiring Kerberos would get all these packages through
Drivolution without any configuration. As drivers are loaded in
a separate classloader, this also avoids any conflict with similar
libraries required by other components of the applications.

5.4.2 Drivolution as a License Server
IBM DB2 has two licensing models: per-CPU and per-user.
When using the per-user licensing model, each client application
must use a license key that is provided in a separate jar file.
Multiple strategies are possible to use Drivolution as a license
management server.

Licenses can be statically assigned to clients so that each time a
client connects it receives the same driver and license. This
approach avoids any conflicts or starvation, but it is not very
flexible. A more dynamic solution marks drivers as expired as
soon as they have been delivered to a client. The bootloader can
notify the Drivolution server when the driver is unloaded to give
back its lease and to allow the driver to be re-used by another
client. However, the Drivolution server must be able to detect
when the client application terminates, to prevent drivers from
holding a license forever.

If the Drivolution server and bootloader are using a dedicated
connection, it can be used as a failure detector. If the
Drivolution server is tightly integrated with the database, it can
check if any connection with the client is still active in the
database engine. Otherwise, the Drivolution server can wait for
the client lease to expire and, if no lease renewal command has
been issued by the bootloader, declare the driver freed.

In all scenarios, Drivolution can easily be extended as a central
management location for database licenses required by client
applications. Licenses can even be renewed or upgraded
dynamically without having to interrupt client applications.

6. CONCLUSION
If DBMS vendors united behind a common standard wire

protocol for the application-driver-DB engine communication,

then driver lifecycle management would be easy. In the absence
of such agreement, though, it is necessary to provide a standard
bootstrap infrastructure that enables easy lifecycle management
even in the presence of diverse legacy database drivers.

We described Drivolution, a new approach to distribute,
install and upgrade database drivers, that is transparent to client
applications. We implemented Drivolution for Java applications
and JDBC-compliant database drivers. We have argued the
benefits for the DBA’s management tasks in heterogeneous
environments or complex, highly available database clusters.
Drivolution enables seamless dynamic reconfiguration of
applications and delivery of custom drivers.

We believe it is feasible – even in the short term – for
standard APIs, such as JDBC or ODBC, to provide a
Drivolution bootloader that will be able to load any API-
compliant driver. Language specific bootloaders can also be
built, provided that dynamic code loading is available. With
such Drivolution implementations, system administrators will be
able to upgrade in one step hundreds of drivers in client
applications from a single location with zero downtime.

7. ACKNOWLEDGEMENTS
We would like to thank Steve Dropsho, our shepherds TJ Giuli
and Nick Briggs, and the anonymous reviewers for their
valuable feedback. We are also thankful to the Continuent
customers and staff who have inspired this work.

8. REFERENCES
[1] E. Cecchet and G. Candea – Drivolution Developer’s Guide

version 1.0 – http://sourceforge.net/projects/drivolution/
[2] A. Descartes and Tim Bunce – Programming the Perl DBI

– O'Reilly & Associates, 2000.
[3] Drivolution web site –

http://sourceforge.net/projects/drivolution/
[4] IBM DB2 JDBC driver installation guide -

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.j
sp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm.

[5] S. Liang and Gilad Bracha - Dynamic Class Loading in the
Java Virtual Machine – OOPSLA’98, October 1998.

[6] Microsoft White Paper – Match.com Halves Server Farm,
Doubles Speed with ASP.NET and Windows Server –
http://download.microsoft.com/documents/customereviden
ce/ 6740_Match.com.doc, 2004.

[7] MySQL Enterprise drivers –
http://www.mysql.com/products/connector/

[8] MySQL supported platforms –
http://www.mysql.com/support/supportedplatforms/

[9] S. Newman and Jim Gray – Which Way to Remote SQL? –
Database Programming and Design, v4.2, Dec. 1991.

[10] James Norton – Dynamic Class Loading for C++ on Linux
– Linux Journal, May 2000.

[11] Pair networks -
http://www.pair.com/support/knowledge_base/our_network
_and_servers/ server_configurations.html

[12] Sequoia Project. http://sequoiadb.sourceforge.net/
[13] R. Strahl – Dynamically executing code in .Net – West

Wind whitepaper, http://www.west-wind.com/, 2002.
[14] Sun Microsystems – Java™ Management Extensions

Instrumentation and Agent Specification, v1.2 – 2002.

